
Kotlin for Python Developers
Documentation

Release 1.0.0

Paul Everitt <paul.everitt@jetbrains.com>

May 25, 2018

Contents

1 About This Guide 3
1.1 Why You’ll Like This Guide . 3
1.2 Contributing . 3

2 Setup 5
2.1 The Language . 5
2.2 The IDE . 5
2.3 The Project . 5
2.4 Project Layout . 6

3 Hello World 7
3.1 The REPL . 7
3.2 First File . 10
3.3 Braces . 11
3.4 Quotation Marks . 12
3.5 Comments . 12
3.6 Variables . 12
3.7 String Templates . 13
3.8 Functions . 13
3.9 Conditionals . 14
3.10 Looping . 14
3.11 Classes . 15

4 Variables and Types 17

5 Conditionals 19

6 Sequences and Looping 21

7 Functions 23

8 Classes 25

9 Packages and Imports 27

10 Indices and tables 29

i

ii

Kotlin for Python Developers Documentation, Release 1.0.0

Kotlin: it’s new, it’s hot, it’s exciting! If you’re a Python developer, you might be interested in Kotlin for Android
development. If you’re a PyCharm user, you might want to write an IDE plugin, using Kotlin.

In both cases, you’re looking to to add Kotlin to your programming arsenal. This documentation teaches Kotlin – from
the perspective of a Python developer who knows nothing about Kotlin, Java, Gradle, or the JVM.

Contents 1

Kotlin for Python Developers Documentation, Release 1.0.0

2 Contents

CHAPTER 1

About This Guide

In no time at all, Kotlin has become an important language to learn, with videos and tutorials and examples
and. . . everything you could want.

Unless you’re a Python dev. Kotlin is “better Java”, but most resources presume you know Java and its ecosystem. It
sure would be nice if this shiny new toy was explained in Python terms.

That’s what we’re doing in this guide. Assuming you know nothing about Java, Gradle, etc., we’re going to get you
productive in Kotlin and IntelliJ. If you’re not a Python developer, you will likely still find this guide useful.

1.1 Why You’ll Like This Guide

• Explained in terms of Python

• Presumes no Java knowledge

• Hand-holding and hands-on

• Text, code, and video

• Co-written by Hadi Hariri, a leading spokesperson for Kotlin

1.2 Contributing

We want this guide to be community-oriented and collaborative. Did we do something stupid? File a ticket or even
send us a pull request.

3

Kotlin for Python Developers Documentation, Release 1.0.0

4 Chapter 1. About This Guide

CHAPTER 2

Setup

Before jumping into features of the language, let’s get ourselves setup. Both Kotlin and Python have sites that let you
enter and evaluate code in a browser. For our purposes, let’s compare getting a real, local setup for each language.

2.1 The Language

Getting Python and Java installed are similar exercise, but with different obstacles. For Python, while two of the major
platforms ship a Python, everybody on earth will beat you over the head if you use “the system Python”. For Java, it
is not installed by default on most platforms.

Thus, both Python and Java mean an initial, joyful step into the “How do I install it?” thicket.

This is covered in depth elsewhere, so we’ll skip it. From a Pythonista’s perspective, it’s pretty similar. You have to
make some choices about which Java distribution, but we have some dirty laundry here as well – 2 vs. 3, python.org
vs. platform-y Homebrew etc. vs. Anaconda, PyPy vs. Jython vs. weird experiment of the week.

Call this one a tie.

2.2 The IDE

We’re JetBrains: we’re going to use the IDE as the entry point for making a project. For both Python and Kotlin, you
might make your new project environment from the command line and then open it.

Let’s use the IDE make our project, following along with the very-useful Getting Started with IntelliJ IDEA documen-
tation.

2.3 The Project

In PyCharm, you fire it up and have 3 choices: create a new project from scratch, open a directory on disk, or get a
clone from a VCS system. In the first, you can choose from some project templates, but you then have the important

5

https://try.kotlinlang.org/
http://pythonfiddle.com
https://kotlinlang.org/docs/tutorials/getting-started.html

Kotlin for Python Developers Documentation, Release 1.0.0

part regarding this article:

[screenshot of create new project]

In Python, we’re encouraged to put each project in isolation using virtual environments. Yet because it is optional,
people forget to, and create a world of hurt for themselves. Or they decide to do it, and are confronted with choices
and complexity which hurt their brain. PyCharm helps make some of that pain go away:

[screenshot of new interpeter screen]

With two decisions – project type and project interpreter – you now have a new project and environment. PyCharm
made some decisions for you, the level of magic is one degree away.

When creating a Kotlin project, you’ll confront some technologies that you are unfamiliar with. These are important
decisions. Let’s walk through them.

Go through step by step: SDK, facets, Gradle, class paths – all from a Python perspective

Virtual environments and package management are places where Python is behind. At the same time, the complexity
is limited. Java (and for that matter, NodeJS) have stronger stories, but you can’t take a step in without feeling pretty
dumb about the huge concepts that you don’t know.

I wanted to be impartial and call this one against Python. I can’t. It’s a draw.

2.4 Project Layout

In Python, that’s about it. You could, at this point, just make a .py file and nobody would complain. Maybe a
.gitignore.

You could, of course, be a grown-up and make a Python package. You’d then be teleported into a world of confusion:
setup.py vs. requirements.txt (vs. Pipfile vs. buildout.cfg), MANIFEST.in, setup.cfg, do I
put my sources under project_name or src/project_name. But those are university politics, not state-ordered
mandates.

Talk about: src/main/kotlin/someFile.kt and whether that path matters, vs. com.pauleveritt.projectname and how that
affects choices.

6 Chapter 2. Setup

CHAPTER 3

Hello World

Java is installed, our IDE has a project open, we’re ready to write some code. In this step we breeze through a light
treatment of many Kotlin concepts, all from the Python perspective.

3.1 The REPL

Python has an interactive interpreter, aka REPL, which makes it easy to play around and learn. It’s a dynamic language,
so this makes sense. As it turns out, Kotlin (in IntelliJ) has a REPL also.

Opening the Kotlin REPL is easy. You can use the Tools | Kotlin menu or search for the action:

7

Kotlin for Python Developers Documentation, Release 1.0.0

In Python we have the Python Console tool window, which opens the Python interpreter in the context of your
project. The Kotlin REPL is the same idea.

Let’s type in some code:

8 Chapter 3. Hello World

Kotlin for Python Developers Documentation, Release 1.0.0

Here we typed a line of Kotlin code and executed it with Cmd-Enter (macOS.) We could have clicked the green
play button, which triggers the run action just like Cmd-Enter. Kotlin evaluated our line, letting Kotlin/Java do a
mountain of machinery behind the scenes.

The REPL can handle multiple lines:

3.1. The REPL 9

Kotlin for Python Developers Documentation, Release 1.0.0

As this is our first foray into Kotlin, let’s analyze this small bit of code from the Python perspective:

1 val msg = "Hello Kotlin"
2 print(msg)

• We declare variables with var (which allows re-assignment) or val (which is like a constant). Python doesn’t
have var.

• Double quotes for strings

• No semicolons!

• A print function (like Python 3, but unlike Python 2)

All in all. . . other than var, it’s exactly like Python.

Click the red X to close the REPL and let’s start writing some Kotlin code.

3.2 First File

In Python, we’d make a .py file and start typing in some code. From Python’s semantics, there are almost no rules
about the file itself – name, location, etc. For example, here is a minimum hello_world.py:

1 # Python
2 print("Hello World")

10 Chapter 3. Hello World

Kotlin for Python Developers Documentation, Release 1.0.0

We can start the same in Kotlin. IntelliJ has created a src directory for you. Right-click on that and create a file at
src/hello_world/hello_world.kt:

1 fun main(args: Array<String>) {
2 print("Hello World")
3 }

Here’s the equivalent Python file to mimic a main function:

1 # Python
2 def main():
3 print("Hello World")
4

5

6 main()

Python uses def to define a function, Kotlin uses fun. We’ll talk more about this in Functions.

The Kotlin file shows the standard Kotlin “entry point”: by convention, the file being executed must have a function
named main which accepts a single argument, an array of strings. Kotlin itself then calls this main function. This is a
bit similar to the common (but not required) Python run block. For example, this file in Python might look like this:

1 # Python
2 def main():
3 print("Hello World")
4

5

6 if __name__ == '__main__':
7 main()

In this Python example, we had to both detect that the module was being run (instead of imported) and then call the
appropriate “main” function.

We saw strong typing in the Kotlin function definition. Python of course has typing, but it is at run time and is inferred.
(We’ll discuss type hinting in the section on Variables and Types.)

Time to run this, which really means, compile and execute. If you’re familiar with PyCharm run configurations and
gutter icons, it’s similar. Click the Kotlin symbol in the gutter for line 1 and select Run:

[TODO screenshot of running it]

Note: IntelliJ prompted us to Run 'Hello_worldKT'. What’s Hello_worldKT? Answer: To make Java
happy, Kotlin generated a Java class behind the scenes.

When you clicked this, there was a lag that you don’t get in Python. This the build/compile phases from Java. It’s
incremental, so it is faster after the first time.

Now that we’ve run our program, let’s breeze through some head-to-head comparisons on a few programming language
basics.

3.3 Braces

This is the most obvious point: like most other programming languages, Kotlin delimits blocks with braces. Python
uses indentation.

3.3. Braces 11

Kotlin for Python Developers Documentation, Release 1.0.0

3.4 Quotation Marks

Switching between languages, or even projects, means swinging back and forth between single versus double quotes
for strings. For example, TypeScript prefers double quotes, but ReactJS ES6 applications prefer single quotes. And
they are both (sort of) JavaScript!

Python’s PEP 8 style guide doesn’t prefer one or the other, but most Python projects seem to use single quotes. In
fact, Python has triple quoted strings!

1 # Python
2 hello = 'world' # best
3 hello = "world" # ok
4 hello = """
5 world""" # triple

Java (and Kotlin) use a single quote for a single character value and double quotes for strings. Triple-quotes indicates
a raw string:

1 // Kotlin
2 val c = 'C' // character
3 val hello = "hello" // string
4 val raw_string = """
5 line 1
6 line 2
7 """

3.5 Comments

Kotlin supports the two familiar styles of comments: end-of-line and block comments:

1 val hello = "world" // Kotlin line comment
2 /*
3 Let's leave out
4 these lines
5 */

IntelliJ (and thus PyCharm) as an IDE makes it easy to comment and uncomment lines and selections with Cmd-/.

Python, of course, only uses hash # as the comment symbol, with no block comments:

1 #
2 # Python multiline commments
3 # have a lot of hashes.
4

5 hello = 'world' # Python comment

3.6 Variables

Python doesn’t have any special syntax for declaring a variable. You just assign something:

1 # Python
2 hello = 'world'

12 Chapter 3. Hello World

https://kotlinlang.org/docs/reference/basic-types.html#strings

Kotlin for Python Developers Documentation, Release 1.0.0

Kotlin, though, does. In fact Kotlin has two keywords: one to declare a read-only immutable value, and one for a
mutable variable:

1 // Kotlin
2 val hello = "world" // Read-only, val == value
3 var hello = "world" // Can be re-assigned, var == variable

Where’s the Java-style type noise? Good news – Kotlin can infer the type. The above is the same as being explicit:

1 // Kotlin
2 val hello: String = "hello"

Also, like Python, you can initialize a variable without assigning it:

1 // Kotlin
2 var hello

Of course with Python 3.6 variable annotations, we can make Python look much more like Kotlin. We cover this in
the section on Variables and Types.

3.7 String Templates

Python – the “there should be one way to do things” language – actually has several ways to do string templates:

1 # Python
2 msg = 'World'
3 print('Hello %s' % msg) # Original
4 print('Hello {msg}'.format(msg=msg)) # Python 3 (then 2)
5 print(f'Hello {msg}') # Python 3.6
6 print(f'Hello {msg.upper()}') # Expressions

Kotlin also has string templates with expressions:

1 // Kotlin
2 msg = "World"
3 print("Hello $msg")
4 print("Hello ${msg.toUpperCase()}")

3.8 Functions

Python functions can be very simple:

1 # Python
2 def four():
3 return 2 + 2

No curly braces, just indentation. Kotlin’s simplest case is pretty close:

1 // Kotlin
2 fun four(): Int {
3 return 2 + 2
4 }

3.7. String Templates 13

Kotlin for Python Developers Documentation, Release 1.0.0

Kotlin adds the curly braces and has to define the return type (which can be omitted if there is no return value.)

But watch this – a function expression:

1 // Kotlin
2 fun four() = 2 + 2

Admit it, that’s pretty sexy. Function expressions are a big new idea which we’ll cover in the section on Functions.

Passing in function arguments is straightforward in Python:

1 # Python
2 def combine(x, y):
3 return x + y

How does that compare to Kotlin?

1 // Kotlin
2 fun sum(a: Int, b: Int): Int {
3 return a + b
4 }

You have to provide the type information on the function arguments and return value.

3.9 Conditionals

Let’s take a quick look at things like conditionals and looping. In Python, an if/then/else is straightforward,
with use of indentation:

1 # Python
2 if a > b:
3 return a
4 else:
5 return b

Kotlin looks quite similar, adding parenthesis (optional in Python) and braces:

1 // Kotlin
2 if (a > b) {
3 return a
4 } else {
5 return b
6 }

We’ll cover more on this in Conditionals.

3.10 Looping

Let’s compare looping over sequences. Simple Python example:

1 # Python
2 items = ('apple', 'banana', 'kiwi')
3 for item in items:
4 print(item)

14 Chapter 3. Hello World

Kotlin for Python Developers Documentation, Release 1.0.0

Here we’ve created an immutable sequence (a tuple) in items. We looped over it in the most basic way possible.

In Kotlin, we have a different construct for making the sequence. Looping is similar, though we use a parentheses
after for:

1 // Kotlin
2 val items = listOf("apple", "banana", "kiwi")
3 for (item in items) {
4 println(item)
5 }

In this case we used println. In Python, the print function always makes a newline unless you ask it not to.

Both Python and Kotlin have rich and interesting control structures, giving both power and terseness. We’ll see more
in Sequences and Looping.

3.11 Classes

Lots to cover later on this, so for now, let’s just view the simplest couple of cases. The minimum in Python:

1 # Python
2 class Message:
3 pass

In Kotlin:

1 // Kotlin
2 class Message

It’s hard to tell which of those have the smaller conceptual density. And who cares – they’re both tiny! Let’s add a
constructor, some variables, and methods. First in Python:

1 # Python
2 class Message:
3 greeting = 'Hello'
4

5 def __init__(self, person):
6 self.person = person
7

8 def say_hello(self):
9 return f'{self.greeting} {self.person}'

This class has a “constructor” with one argument, which is assigned as an instance attribute. The class attribute of
greeting is used in a method say_hello which returns an evaluated f-string.

How about the type hinting flavor for Python 3.5+?

1 # Python
2 class Message:
3 greeting = 'Hello'
4

5 def __init__(self, person: str):
6 self.person = person
7

8 def say_hello(self) -> str:
9 return f'{self.greeting} {self.person}'

3.11. Classes 15

Kotlin for Python Developers Documentation, Release 1.0.0

Let’s see this in Kotlin:

1 // Kotlin
2 class Message(val person: String) {
3 val greeting = "Hello"
4

5 fun sayHello(): String {
6 return "$greeting $person"
7 }
8 }

That constructor syntax, right in the middle of the class name line, is unusual and cool. It helps to reduce the typing
versus Python’s constructor. We’ll go into more depth on this in the section on Classes.

16 Chapter 3. Hello World

CHAPTER 4

Variables and Types

JavaScript ES6 and TypeScript do (let and const.)

As we’ll see later, Kotlin lets you skip the syntax by inferring type information, but it is still at compile time.

Kotlin will let you know to use a val when you use a var unnecessarily

• Inferred types versus explicit

• The compiler will fail on re-assignment of val

• Scope: top-level versus local

Class variables: properties and fields covered in classes

• Types on variables

• Basic types https://kotlinlang.org/docs/reference/basic-types.html#basic-types

17

https://kotlinlang.org/docs/reference/basic-types.html#basic-types

Kotlin for Python Developers Documentation, Release 1.0.0

18 Chapter 4. Variables and Types

CHAPTER 5

Conditionals

19

Kotlin for Python Developers Documentation, Release 1.0.0

20 Chapter 5. Conditionals

CHAPTER 6

Sequences and Looping

1. 1..5 vs. range(5) (and “a”..”z”)

2. 2 in range(5) (the in operator)

3. if else vs. if then

4. if “expressions” (Python doesn’t have this) var maxValue:Int = if (a > b) a else b but multiple lines (only the last
value is used in the block)

5. when (aka switch). . . Python doesn’t have this:

when (x) {
!in 1..20 -> println(“x is 1”)
21,22 -> println(“x is 22 or 23”)
else -> {

// Some set of lines in a block
println(“x is greater than 22”)

}
}

6. etc.

generators, iterators

21

Kotlin for Python Developers Documentation, Release 1.0.0

22 Chapter 6. Sequences and Looping

CHAPTER 7

Functions

Looking at the Kotlin code itself:

• This special main function has a contract. . . it’s going to be passed an argument

• We see the first hint of typing. It’s mandatory in Kotlin. . . sort of. In this case we have an array of strings. With
Python 3.6 variable annotations for optional type hinting, this would be:

1 import sys
2 from typing import List
3

4

5 def main(args: List[str]):
6 print("Hello World")
7

8

9 if __name__ == '__main__':
10 main(sys.argv)

• Whereas Python terminates the function line with a colon and uses indentation for the block, Kotlin uses the
standard curly braces syntax

Python’s weird if __name__ block is ugly, and reveals a certain something about packaging being added after-the-
fact, but shows that Python is ready to just let you do damn fool stupid stuff at module scope. For instance, run your
program. Kotlin has a bit of a formal contract to meet when executing an “entry point”.

Note: Don’t like typing the boilerplate? PyCharm has a Live Template main for generating the run block at the
bottom. So does Kotlin. We’ll show this in the video for this segment.

Kotlin has another syntactic convenience: you aren’t required to say that the function returns nothing.

Function expressions

If using Python 3.5+ type hinting, that would be:

23

Kotlin for Python Developers Documentation, Release 1.0.0

1 def sum(a: int, b:int) -> int:
2 return a + b

Not too shabby. This will be a recurring point: we’ll compare Kotlin not just with “normal” Python, but also against
type-hinted-Python.

• Function argument typing and return value typing

24 Chapter 7. Functions

CHAPTER 8

Classes

1. Defining a class with a method but no constructor, P has “self”

2. Creating instance of class does NOT require new in either

3. Class variables access in P via self or class name

4. P can assign instance attributes whenever it wants (within __ limitations), change types whenever, no concept
of public/private

5. Constructors

6. Binding of constructor arguments to instance attributes (assignment, usage)

? - What happens if I don’t do var in the constructor? It’s unresolved later, but where does it go?

In fact, Kotlin has a rich, multi-layered approach to construction. Our class attribute greeting is marked as im-
mutable (and should be marked with the optional private) as well.

In some ways, Python is clunkier in this example. We have the magic of “dunder” names on important methods,
such as the “constructor”. The symbol of self is sprinkled in to give the instance scope a placeholder. And quite
obviously, Kotlin’s primary constructor – right after the class name – is terse and doesn’t require assigning each value
to “self”.

Note: Python’s __init__ is called a constructor, but as its name implies, it is actually an initializer. The __new__
method is the factory.

8. Kotlin does some magic behind-the-scenes creation of Java classes named from the file name, because Java
needs classes

25

Kotlin for Python Developers Documentation, Release 1.0.0

26 Chapter 8. Classes

CHAPTER 9

Packages and Imports

Java Packages, imports, namespaces

Installing Python packages

1. Creating a package, then creating a class in that package

2. Package namespaces

3. Importing from a package/non-package

? - What are the magic places that com.hello might find class World? In src, src/main/kotlin ?

4. Installing packages

5. Sharing packages

6. Making “executables”

27

Kotlin for Python Developers Documentation, Release 1.0.0

28 Chapter 9. Packages and Imports

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

29

	About This Guide
	Why You’ll Like This Guide
	Contributing

	Setup
	The Language
	The IDE
	The Project
	Project Layout

	Hello World
	The REPL
	First File
	Braces
	Quotation Marks
	Comments
	Variables
	String Templates
	Functions
	Conditionals
	Looping
	Classes

	Variables and Types
	Conditionals
	Sequences and Looping
	Functions
	Classes
	Packages and Imports
	Indices and tables

